The Science of Fermentation, Bibliography
Bamforth, C.W. (2005) Handbook of Food & Beverage Fermentation Technology. Boca Raton, FL: CRC Press.
Cooper, S. (2024) The Fermentation Kitchen: Recipes and Techniques for Kimchi, Kombucha, Koji and More. London: DK Red
Coucquyt, P., Brunst, B. and De Clippeleer, J. (2020) The Art & Science of Foodpairing: 10,000 Flavour Matches That Will Transform the Way You Eat. London: Mitchell Beazley.
Davidson, A. (2014) The Oxford Companion to Food. 3rd edn. Oxford: Oxford University Press.
Gilmartin, C. (2021) Fermented Foods: A Practical Guide. Bristol: Ferment Books.
Hunter, B.T. (2011) Fermented Food and Beverages: Creative Recipes for Everything from Kombucha to Sauerkraut. New York: Square One Publishers.
Hutkins, R. (2006) Microbiology and Technology of Fermented Foods. Ames, IA: Blackwell Publishing.
Katz, S. (2003) Wild Fermentation: The Flavor, Nutrition, and Craft of Live-Culture Foods. White River Junction, VT: Chelsea Green Publishing.
Katz, S. (2012) The Art of Fermentation: An In-Depth Exploration of Essential Concepts and Processes from Around the World. White River Junction, VT: Chelsea Green Publishing.
McGee, H. (2004) On Food and Cooking: The Science and Lore of the Kitchen. New York: Scribner.
Mouritsen, O.G. and Styrbæk, K. (2014) Umami: Unlocking the Secrets of the Fifth Taste. New York: Columbia University Press.
Nout, M.J.R. and Sarkar, P.K. (2018) Microbiology of Fermented Foods. New York: Springer.
Read, J. (2023) Of Cabbages and Kimchi: A Practical Guide to the World of Fermented Food. London: Kyle Books.
Ray, B. and Panda, S.H. (2014) Food Fermentation and Microorganisms. 2nd edn. Boca Raton, FL: CRC Press.
Read, J. (2024, April 17). Living Fermented Foods and Drinks. Oxford Research Encyclopedia of Food Studies. https://oxfordre.com/foodstudies/view/10.1093/acrefore/9780197762530.001.0001/acrefore-9780197762530-e-15. doi:https://doi.org/10.1093/acrefore/9780197762530.013.15.
Segnit, N. (2010) The Flavour Thesaurus: Pairings, Recipes and Ideas for the Creative Cook. London: Bloomsbury.
Shockey, K.K., Shockey, C. and Kunkel, E. (2014). Fermented vegetables : creative recipes for fermenting 64 vegetables & herbs in krauts, kimchis, brined pickles, chutneys, relishes & pastes. North Adams, Ma: Storey Publishing.
Smith, D.V. and Firestein, S. (2017) Tasting and Smelling: The Chemical Senses. San Diego, CA: Academic Press.
12–17 Timeline of fermentation
Grainger, S. (2020). The Story of Garum. Routledge. Fisberg, M. and Machado, R. (2015). History of Yogurt and Current Patterns of Consumption. Nutrition Reviews, [online] 73(1), pp.4–7. doi:https://doi.org/10.1093/nutrit/nuv020.
https://stickymangorice.com/2022/04/16/french-cheeses-by-region/
Jyoti Prakash Tamang and Kasipathy Kailasapathy (2010). Fermented foods and beverages of the world. Boca Raton: Taylor & Francis.
Magid, A.M. (2008). You are what you eat. French Food Texts and National Identity: Consommé, Cheese Soufflé, Francité? Newcastle, U.K.: Cambridge Scholars Pub.
Neela, S. and Fanta, S.W. (2020). Injera (An Ethnic, Traditional Staple Food of Ethiopia): A review on Traditional Practice to Scientific Developments. Journal of Ethnic Foods, 7(1). doi:https://doi.org/10.1186/s42779-020-00069-x.
Oluwafemi Ayodeji Adebo, Chiemela Enyinnaya Chinma, Adewale Olusegun Obadina, Antonio Gomes Soares, Sandeep Kumar Panda and Gan, R.-Y. (2023). Indigenous Fermented Foods for the Tropics. Elsevier.
Vargas-Yana, D., Aguilar-Morón, B., Pezo-Torres, N., Shetty, K. and Ranilla, L.G. (2020). Ancestral Peruvian ethnic fermented beverage ‘Chicha’ based on purple corn (Zea mays L.): unraveling the health-relevant functional benefits. Journal of Ethnic Foods, 7(1). doi:https://doi.org/10.1186/s42779-020-00063-3.
14–15 Why is fermented food so tasty?
Ajinomoto. UMAMI: the 5th Basic Taste. Ajinomoto Foods Nigeria Ltd. Retrieved November 27, 2023, from https://ajinomoto.com.ng/umami-the-5th-basic-taste/
Beauchamp, G. K., & Jiang, P. (2015). Comparative biology of taste: Insights into mechanism and function. Flavour, 4(1), 1–3. https://doi.org/10.1186/2044-7248-4-9
Cai, L., Li, D., Dong, Z., Cao, A., Lin, H., & Li, J. (2016). Change regularity of the characteristics of Maillard reaction products derived from xylose and Chinese shrimp waste hydrolysates. LWT - Food Science and Technology, 65, 908–916. https://doi.org/10.1016/j.lwt.2015.09.007
Kurihara, K. (2015). Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. In BioMed Research International (Vol. 2015). Hindawi Publishing Corporation. https://doi.org/10.1155/2015/189402
Masic, U., & Yeomans, M. R. (2014). Umami flavor enhances appetite but also increases satiety. American Journal of Clinical Nutrition, 100(2), 532–538. https://doi.org/10.3945/ajcn.113.080929
Mouritsen, O. G. (2023). Umamification of food facilitates the green transition. Soil Ecology Letters, 5(1), 1–3. https://doi.org/10.1007/s42832-022-0155-1
Mouritsen, O. G., & Styrbæk, K. (2020). Design and ‘umamification’ of vegetable dishes for sustainable eating. International Journal of Food Design, 5(1–2), 9–42. https://doi.org/10.1386/IJFD_00008_1
San Gabriel, A., Rains, T. M. ;, & Beauchamp, G. (2024). Umami. Food and Health (A. San Gabriel, T. M. ; Rains, & G. Beauchamp, Eds.). Springer. https://doi.org/doi.org/10.1007/978-3-031-32692-9
Sano, C. (2009). History of glutamate production. American Journal of Clinical Nutrition, 90(3). https://doi.org/10.3945/ajcn.2009.27462F
Umami Information Center. (2007). Umami Rich Ingredients. https://www.umamiinfo.com/richfood/foodstuff/miso.html
Yamaguchi, S., & Ninomiya, K. (2000). The Use and Utility of Glutamates as Flavoring Agents in Food. Journal of Nutrition, 130, 921–926.
Zhao, C. J., Schieber, A., & Gänzle, M. G. (2016). Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – A review. Food Research International, 89, 39–47. https://doi.org/10.1016/j.foodres.2016.08.042
16–17 How does fermentation enhance flavour?
Li, Q., Zhang, L., & Lametsch, R. (2020). Current progress in kokumi-active peptides, evaluation and preparation methods: a review. Critical Reviews in Food Science and Nutrition, 26(10), 1–12. https://doi.org/10.1080/10408398.2020.1837726
Maruyama, Y., Yasuda, R., Kuroda, M., & Eto, Y. (2012). Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells. PLoS ONE, 7(4), 1–8. https://doi.org/10.1371/journal.pone.0034489
Miyamura, N., Kuroda, M., Mizukoshi, T., Kato, Y., Yamazaki, J., Miyano, H., & Eto, Y. (2015). Distribution of a kokumi peptide, γ-Glu-Val-Gly, in various fermented foods and the possibility of its contribution to the sensory quality of fermented foods. Fermentation Technology, 4(2), 3–5. https://doi.org/10.4172/2167-7972.1000121
Motonaka, K. (2024). Kokumi Substance as an Enhancer of Koku. In Sringer. https://doi.org/10.1007/978-981-99-8303-2
Nishimura, T., & Kuroda, M. (2019). Koku in Food Science and Physiology. In Springer (Motonaka K). https://doi.org/10.1007/978-981-13-8453-0
Rodríguez Valerón, N., Mak, T., Jahn, L. J., Arboleya, J. C., & Sörensen, P. M. (2023a). Characterization of kokumi γ-glutamyl peptides and volatile aroma compounds in alternative grain miso fermentations. LWT Food Science and Technology, 188(10), 1–9. https://doi.org/10.1016/j.lwt.2023.115356
Rodríguez Valerón, N., Mak, T., Jahn, L. J., Arboleya, J. C., & Sörensen, P. M. (2023b). Derivation of Kokumi γ-Glutamyl Peptides and Volatile Aroma Compounds from Fermented Cereal Processing By-Products for Reducing Bitterness of Plant-Based Ingredients. Foods, 12(23). https://doi.org/10.3390/foods12234297
Wang, H., Suo, R., Liu, X., Wang, Y., Sun, J., Liu, Y., Wang, W., & Wang, J. (2022). Kokumi γ-glutamyl peptides: Some insight into their evaluation and detection, biosynthetic pathways, contribution and changes in food processing. Food Chemistry Advances, 1(7), 1–9. https://doi.org/10.1016/j.focha.2022.100061
030–035 Microbiology
Adams, M R, Food Microbiology, Royal Society of Chemistry, 2015
Balloux F, van Dorp L. Q&A: What are pathogens, and what have they done to and for us? BMC Biol. 2017 Oct 19;15(1):91. doi: 10.1186/s12915-017-0433-z. PMID: 29052511; PMCID: PMC5648414.
Gilmartin, C R, Fermented Foods, Crowood Press, 2020.
Hutkins R W, Microbiology and Technology of Fermented Foods, 2nd Edition. Wiley-Blackwell, 2018
Shi A, Fan F, Broach JR. Microbial adaptive evolution. J Ind Microbiol Biotechnol. 2022 Apr 14;49(2).
42–043 Why is gut health important?
Hou, K., Wu, Z.-X., Chen, X.-Y., Wang, J.-Q., Zhang, D., Xiao, C., Zhu, D., Koya, J.B., Wei, L., Li, J., Chen, Z.-S., 2022. Microbiota in health and diseases. Sig Transduct Target Ther 7, 135.
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., Tuohy, K., 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57, 1–24.
44–45 How do fermented foods affect our gut?
Asnicar, F., Berry, S.E., Valdes, A.M., Nguyen, L.H., Piccinno, G., Drew, D.A., Leeming, E., Gibson, R., Le Roy, C., Khatib, H.A., Francis, L., Mazidi, M., Mompeo, O., Valles-Colomer, M., Tett, A., Beghini, F., Dubois, L., Bazzani, D., Thomas, A.M., Mirzayi, C., Khleborodova, A., Oh, S., Hine, R., Bonnett, C., Capdevila, J., Danzanvilliers, S., Giordano, F., Geistlinger, L., Waldron, L., Davies, R., Hadjigeorgiou, G., Wolf, J., Ordovás, J.M., Gardner, C., Franks, P.W., Chan, A.T., Huttenhower, C., Spector, T.D., Segata, N., 2021. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 27, 321–332.
Leeuwendaal, N.K., Stanton, C., O’Toole, P.W., Beresford, T.P., 2022. Fermented Foods, Health and the Gut Microbiome. Nutrients 14, 1527.
Mukherjee, A., Breselge, S., Dimidi, E., Marco, M.L., Cotter, P.D., 2024. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 21, 248–266.
Şanlier, N., Gökcen, B.B., Sezgin, A.C., 2019. Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition 59, 506–527.
Stiemsma, L.T., Nakamura, R.E., Nguyen, J.G., Michels, K.B., 2020. Does Consumption of Fermented Foods Modify the Human Gut Microbiota? The Journal of Nutrition 150, 1680–1692.
46–47 What are functional foods?
Bermingham, K.M., Linenberg, I., Polidori, L. et al. Effects of a personalized nutrition program on cardiometabolic health: a randomized controlled trial. Nat Med 30, 1888–1897 (2024).
Hong, W., Chen, Y., Chen, M., 2010. The Antiallergic Effect of Kefir Lactobacilli. Journal of Food Science 75.
https://isappscience.org/for-scientists/resources/
Lou, X., Xue, J., Shao, R., Mo, C., Wang, F. and Chen, G. (2023). Postbiotics as potential new therapeutic agents for sepsis. Burns & Trauma, 11. doi:https://doi.org/10.1093/burnst/tkad022.
Ribet, L., Dessalles, R., Lesens, C., Brusselaers, N., Durand-Dubief, M., 2023. Nutritional benefits of sourdoughs: A systematic review. Advances in Nutrition 14, 22–29.
Wastyk, H.C., Fragiadakis, G.K., Perelman, D., Dahan, D., Merrill, B.D., Yu, F.B., Topf, M., Gonzalez, C.G., Van Treuren, W., Han, S., Robinson, J.L., Elias, J.E., Sonnenburg, E.D., Gardner, C.D., Sonnenburg, J.L., 2021. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137-4153.e14.
48–49 How can I include functional foods in my diet?
Gilmartin, C R, Fermented Foods, Crowood Press, 2020.
Ghazanfar S, Muhammad Ali G, Abid R, et al. (2022) An Overview of Functional Food. Current Topics in Functional Food. IntechOpen.
56–057 Should I be worried about pathogens?
Adams, M R, Food Microbiology, Royal Society of Chemistry, 2015
Balloux F, van Dorp L. Q&A: What are pathogens, and what have they done to and for us? BMC Biol. 2017 Oct 19;15(1):91.
Choi, Y., Lee, S., Kim, H.J., Lee, H., Kim, S., Lee, J., Ha, J., Oh, H., Choi, K.-H., Yoon, Y., 2018. Pathogenic Escherichia coli and Salmonella Can Survive in Kimchi during Fermentation. Journal of Food Protection 81, 942–946.
Gill, A., McMahon, T., Ferrato, C., Chui, L., 2024. Survival of O157 and non-O157 shiga toxin-producing Escherichia coli in Korean style kimchi. Food Microbiology 121, 104526. https://doi.org/10.1016/j.fm.2024.104526
Ray, R., Singh, P., 2022. Prevalence and Implications of Shiga Toxin-Producing E. coli in Farm and Wild Ruminants. Pathogens 11, 1332.
Reissbrodt, R., Hammes, W.P., Dal Bello, F., Prager, R., Fruth, A., Hantke, K., Rakin, A., Starcic-Erjavec, M., Williams, P.H., 2009. Inhibition of growth of Shiga toxin-producing Escherichia coli by nonpathogenic Escherichia coli. FEMS Microbiology Letters 290, 62–69.
68–71 Lactic acid bacteria
Oladipo, I.C. and Oyewumi, M.M., 2024. The role of lactic acid bacteria in food processing, nutrition and human health. International Journal of Current Microbiology and Applied Sciences, 13(10). doi:10.20546/ijcmas.2024.1310.033.
Oyedeji, O., Ogunbanwo, S.T. and Onilude, A.A., 2013. Predominant lactic acid bacteria involved in the traditional fermentation of fufu and ogi, two Nigerian fermented food products. Food and Nutrition Sciences, 4(11A), pp.26–32. doi:10.4236/FNS.2013.411A006.
O’Sullivan, D.J., Lee, J.H. and Dominguez, W., 2011. Lactic acid bacteria: Genomics, genetic engineering. In: Encyclopedia of Food Microbiology (2nd ed.). doi:10.1016/B978-0-12-374407-4.00514-8.
Zaunmüller, T. and Unden, G., 2009. Transport of sugars and sugar alcohols by lactic acid bacteria. In: Biology of Microorganisms on Grapes, in Must and in Wine. doi:10.1007/978-3-540-85463-0_8.
75–75 Sauerkraut
Plengvidhya, V., Breidt, F., Lu, Z. and Fleming, H.P., 2007. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Applied and Environmental Microbiology.
Xiong, T., Peng, F., Liu, Y., Deng, Y., Wang, X. and Xie, M., 2014. Fermentation of Chinese sauerkraut in pure culture and binary co-culture with Leuconostoc mesenteroides and Lactobacillus plantarum. LWT - Food Science and Technology.
Xiong, T., Qianqian, G., Song, S., Hao, M. and Xie, M., 2012. Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation. Food Control.
76–77 Dill pickles
Al-Shawi, S.G. and Alneamah, S.J.A., 2021. Cucumber pickles and fermentations. In: IntechOpen Book Chapter. doi:10.5772/INTECHOPEN.96052.
Benzerzoura, M.A., Al-Qadiri, H., Sadder, M.T., Mahafzah, A. and Hamadneh, I., 2023. Screening of wild Lactobacillus plantarum found in brine solution of naturally fermented cucumbers. Jordan Journal of Agricultural Sciences, 19(4). doi:10.35516/jjas.v19i4.376.
Zieliński, H., Surma, M. and Zielinska, D., 2017. The naturally fermented sour pickled cucumbers. In: Fermented Foods in Health and Disease Prevention. doi:10.1016/B978-0-12-802309-9.00021-2.
78–79 Hot Sauce
Md Nor, S., Mohd Yusof, N.N. and Ding, P., 2021. Volatile organic compound modification by lactic acid bacteria in fermented chilli mash using GC-MS headspace extraction. IOP Conference Series: Earth and Environmental Science, 765(1), p.012043. doi:10.1088/1755-1315/765/1/012043.
84–85 Kimchi
Kim, E., Yang, S.-M. and Kim, H.-Y. (2021). Analysis of Cultivable Microbial Community during Kimchi Fermentation Using MALDI-TOF MS. Foods, 10(5), p.1068. doi:https://doi.org/10.3390/foods10051068.
94–97 Kefir
Amorim, F.G., Coitinho, L.B., Dias, A.T., Friques, A.G.F., Monteiro, B.L., Rezende, L.C.D.D., Pereira, T.D.M.C., Campagnaro, B.P., De Pauw, E., Vasquez, E.C., Quinton, L., 2019. Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules. Food Chemistry 282, 109–119.
Davidovic, S., Miljkovic, M., Antonovic, D., Rajilic-Stojanovic, M., Dimitrijevic-Brankovic, S., 2015. Water Kefir grain as a source of potent dextran producing lactic acid bacteria. Hem Ind 69, 595–604.
Rosa DD, Dias MMS, Grześkowiak ŁM, Reis SA, Conceição LL, Peluzio MDCG. Milk kefir: nutritional, microbiological and health benefits. Nutr Res Rev. 2017 Jun;30(1):82-96.
Tingirikari, J.M.R., Sharma, A., Lee, H.-J., 2024. Kefir: a fermented plethora of symbiotic microbiome and health. J. Ethn. Food 11, 35.
Vieira, C.P., Rosario, A.I.L.S., Lelis, C.A., Rekowsky, B.S.S., Carvalho, A.P.A., Rosário, D.K.A., Elias, T.A., Costa, M.P., Foguel, D., Conte-Junior, C.A., 2021. Bioactive Compounds from Kefir and Their Potential Benefits on Health: A Systematic Review and Meta‐Analysis. Oxidative Medicine and Cellular Longevity 2021, 9081738.
104–108 Moulds and more
Abbas, A., & Dobson, A.D.W. (2011). Yeasts and Molds | Penicillium camemberti. In Encyclopedia of Food and Health. https://doi.org/10.1016/B978-0-12-374407-4.00364-2
Bodinaku, I., Shaffer, J., Connors, A. B., Steenwyk, J. L., Biango-Daniels, M. N., Kastman, E. K., ... & Wolfe, B. E. (2019). Rapid Phenotypic and Metabolomic Domestication of Wild Penicillium Molds on Cheese. Mbio, 10(5). https://doi.org/10.1128/MBIO.02445-19
Orlyuk, Y. T., & Stepanishchev, M. I. (2014). Assessment of proteolysis and lipolysis intensity in Pechersky cheese ripening in the presence of penicillium camemberti and penicillium roqueforti molds. Foods and Raw Materials, 2(1). https://doi.org/10.12737/4128
Mohseni, A., Vieira, F.R., Pecchia, J.A. and Gürsoy, B. (2023). Three-Dimensional Printing of Living Mycelium-Based Composites: Material Compositions, Workflows, and Ways to Mitigate Contamination. Biomimetics, [online] 8(2), p.257. doi:https://doi.org/10.3390/biomimetics8020257.
ResearchGate. (n.d.). (PDF) Mycology. [online] Available at: https://www.researchgate.net/publication/326207059_Mycology.
M.R. van Leeuwen (n.d.). Natamycin and the germinating spore. [online] Available at: https://www.researchgate.net/publication/27716147_Natamycin_and_the_germinating_spore.
Tamang, J. P., Anupma, & Shangpliang, H. N. J. (2022). Ethno-microbiology of Tempe, an Indonesian fungal-fermented soybean food and Koji, a Japanese fungal starter culture. Current Opinion in Food Science, 45, 100912. https://doi.org/10.1016/j.cofs.2022.100912
Tarek Mohamed Abdelghany and and (2018). Mycology. [online] Available at: https://www.researchgate.net/publication/326207059_Mycology.
Rachael (2023). The Biology of Molds (Moulds) - classification, characteristics, structure and types. [online] Rs’ Science. Available at: https://rsscience.com/mold-biology-structure/.
110–117 Koji
Chancharoonpong, C., Hsieh, P.C. and Sheu, S.C., 2012. Enzyme production and growth of Aspergillus oryzae S. on soybean koji fermentation. APCBEE Procedia, 2, pp.114–118. doi:10.1016/j.apcbee.2012.06.011.
Gomi, K., 2014. Aspergillus: Aspergillus oryzae. In: Biotechnology of Filamentous Fungi: Technology and Products. Elsevier, pp.121–132. doi:10.1016/B978-0-12-384730-0.00011-2.
Groen, M. Cosy Koji Book (2022). https://www.marikagroen.com/store-rjT4f/p/cosykoji
Umansky, J. and Shih, R. (2020) Koji Alchemy: Rediscovering the Magic of Mold-Based Fermentation. White River Junction, VT: Chelsea Green Publishing.
Yamane, Y., Fujita, J., Shimizu, R., Hiyoshi, A., Fukuda, H., Kizaki, Y. and Wakabayashi, S., 2002. Production of cellulose- and xylan-degrading enzymes by a koji mold, Aspergillus oryzae, and their contribution to the maceration of rice endosperm cell wall. Journal of Bioscience and Bioengineering, 93(1), pp.9–14. doi:10.1016/S1389-1723(02)80046-9.
Yoshizawa, T. (1999) Textbook of Sake Brewing. Tokyo: Brewing Society of Japan.
118–123 Soy Sauce
Cao, C., Sun, H., Song, X.G., Zhao, M., Lin, W., Sun, W., Lin, L., Li, W. and Su, G., 2023. Effect of fermentation with Tetragenococcus halophilus and Zygosaccharomyces rouxii on selected non-volatile taste compounds in soybean protein hydrolysates. Lebensmittel-Wissenschaft & Technologie, 182, p.115053. doi:10.1016/j.lwt.2023.115053.
Devanthi, P.V.P. and Gkatzionis, K., 2019. Soy sauce fermentation: Microorganisms, aroma formation, and process modification. Food Research International, 120, pp.364–374. doi:10.1016/j.foodres.2019.03.010.
https://www.soysauce.or.jp/en/types-and-how-to-use-them
Jingjing, L., Li, D., Hu, Y., Wang, C., Bing, G. and Ning, X., 2015. Effect of a halophilic aromatic yeast together with Aspergillus oryzae in koji making on the volatile compounds and quality of soy sauce moromi. International Journal of Food Science and Technology, 50(6), pp.1303–1310. doi:10.1111/IJFS.12789.
Liu, Z., Xiao, T., Wang, J., Fu, B., Li, W., Hu, Y., Liu, Z., Fu, C., Wang, C., Li, D. and Xu, N., 2023. Analysis of the contribution of koji-making with Z. rouxii on volatile compounds of soy sauce. Lebensmittel-Wissenschaft & Technologie, 180, p.114903. doi:10.1016/j.lwt.2023.114903.
Liu, B., Yan, L., Cao, Z. and Wang, C., 2021. Effect of Tetragenococcus halophilus, Zygosaccharomyces rouxii, and Torulopsis versatilis addition sequence on soy sauce fermentation. Innovative Food Science and Emerging Technologies, 70, p.102662. doi:10.1016/j.ifset.2021.102662.
124–125 Black Garlic
Liu, C., Lu, L., Yang, C., Niu, C., Wang, J., Zheng, F. and Li, Q., 2022. Effects of thermal treatment on alliin and its related sulfides during black garlic processing. Lebensmittel-Wissenschaft & Technologie, 157, p.113158. doi:10.1016/j.lwt.2022.113158.
Utama, G.L., Rahmi, Z., Sari, M.P. and Hanidah, I., 2024. Psychochemical changes and functional properties of organosulfur and polysaccharide compounds of black garlic (Allium sativum L.). Current Research in Food Science, 100717. doi:10.1016/j.crfs.2024.100717.
Wang, B., Zhong, Y., Wang, D., Meng, F., Li, Y. and Deng, Y., 2023. Formation, evolution, and antioxidant activity of melanoidins in black garlic under different storage conditions. Foods, 12(20), p.3727. doi:10.3390/foods12203727.
126–131 Miso
Allwood, J.G., Wakeling, L. and Bean, D.C., 2021. Fermentation and the microbial community of Japanese koji and miso: A review. Journal of Food Science, [online] Available at: https://doi.org/10.1111/1750-3841.15773.
Abiose, S.H., Allan, M.C. and Wood, B.J.B., 1982. Microbiology and Biochemistry of Miso (Soy Paste) Fermentation. Advances in Applied Microbiology, [online] Available at: https://doi.org/10.1016/S0065-2164(08)70237-5.
Japan Federation of Miso Manufacturers Cooperatives (2019) The World of Miso. Available at: https://miso.or.jp/misoonline/wp-content/uploads/pdf/Misopamph19jan08.pdf (Accessed: January 2025)
Shih, R. and Umansky, J. (2020) Koji Alchemy: Rediscovering the Magic of Mold-Based Fermentation. White River Junction, VT: Chelsea Green Publishing.
Shockey, K. and Shockey, C. (2019) Miso, Tempeh, Natto & Other Tasty Ferments: A Step-by-Step Guide to Fermenting Grains and Beans. North Adams, MA: Storey Publishing.
Shurtleff, W. and Aoyagi, A. (1976) The Book of Miso: Savory, High-Protein Seasoning. Berkeley, CA: Ten Speed Press.
Shurtleff, W. and Aoyagi, A. (1979) Miso Production: The Book of Miso, Volume II. Lafayette, CA: Soyinfo Center.
132–133 Tsukemono
Ono, H., Nishio, S., Tsurii, J., Kawamoto, T., Sonomoto, K., & Nakayama, J. (2014). Monitoring of the microbiota profile in nukadoko, a naturally fermented rice bran bed for pickling vegetables. Journal of Bioscience and Bioengineering, 118(5), 520–525. https://doi.org/10.1016/j.jbiosc.2014.04.017
Yamaguchi, M., Imai, K., Chen, D., Seong, Y. A., Jo, K., & Ito, K. (2023). The similarities in microbial and chemical patterns of fermentation in two open environments were promoted by using 150-year-old Nukadoko as starters. bioRxiv. https://doi.org/10.1101/2023.11.17.567490
134–135 Doubanjiang
Niu, C., Xing, X., Yang, X., Zheng, F., Liu, C., Wang, J. and Li, Q., 2022. Isolation, identification and application of Aspergillus oryzae BL18 with high protease activity as starter culture in doubanjiang (broad bean paste) fermentation. Food Bioscience, 49, p.102225. doi:10.1016/j.fbio.2022.102225.
Niu, C., Yang, L., Zheng, F., Liu, C., Wang, J., Xu, X. and Li, Q., 2022. Systematic analysis of the aroma profiles produced by Zygosaccharomyces rouxii Y-8 in different environmental conditions and its contribution to doubanjiang (broad bean paste) fermentation with different salinity. LWT - Food Science and Technology, 161, p.113118. doi:10.1016/j.lwt.2022.113118.
136–137 Gochujang
Kim, S.-H., Chung, K.R., Yang, H.-J. and Kwon, D.Y. (2016). Sunchang gochujang (Korean red chili paste): The unfolding of authenticity. Journal of Ethnic Foods, 3(3), pp.201–208. doi:https://doi.org/10.1016/j.jef.2016.09.002.
Gochujang: Korea's Fermented Red Chili Paste, Serious Eats, 2022.
The Korean Kitchen: Ingredients, Equipment, Techniques, and Recipes, Sunset, 2020.
The Science of Gochujang Fermentation, Food Microbiology Journal, 2018.
Korean Cuisine: Flavours and Traditions, Korean Food Foundation, 2021.
Modern Korean Cooking: A Fusion of Flavors, Gourmet Magazine, 2023.
Korean Traditional Fermented Soybean Products: Jang, D. Shin, D. Jeong, J Ethn Food, 2015.
Nam, Y.-D., Park, S. and Lim, S.-I. (2012). Microbial Composition of the Korean Traditional Food ‘kochujang’ Analyzed by a Massive Sequencing Technique. Journal of Food Science, 77(4), pp.M250–M256. doi:https://doi.org/10.1111/j.1750-3841.2012.02656.x.
Pettid, M. (2008). The History of Korean Food. London: Reaktion Books.
140–141 Tempeh
Devagopalan, H. and Krishnaswamy, I., 2023. Optimization of growth conditions and protease activity for tempeh production from sorghum. Journal of Experimental Agriculture International, 45(11), pp.13–25. doi:10.9734/jeai/2023/v45i112235.
https://biologylearner.com/rhizopus-occurrence-structure-reproduction-pathogenesis/
https://www.notesforshs.com/2022/11/rhizopus-bread-mould.html
Ogawa, Y., Tokumasu, S. and Tubaki, K., 2004. An original habitat of tempeh molds. Mycoscience, 45(4), pp.321–327. doi:10.1007/S10267-004-0180-1.
Teoh, S.Q., Chin, N.L., Chong, C.W., Mat Ripen, A., Mohd Firdaus How, M.S.H.B. and Lim, J.J.L., 2024. A review on health benefits and processing of tempeh with outlines on its functional microbes. Future Foods, 19, p.100330. doi:10.1016/j.fufo.2024.100330.
142–143 Nattō
Milner, M. and Makise, K., 2002. Natto and its active ingredient nattokinase: A potent and safe thrombolytic agent. Alternative and Complementary Therapies, 8(3), pp.157–164. doi:10.1089/107628002760091001.
Zhiming, Z., Peng, W., Xiaojuan, S., Hui, L., Genhai, Z., Li, W., Han, W., Hongfei, W. and Hefang, W., 2017. Method for simultaneously producing vitamin K2 and nattokinase through Bacillus natto fermentation. Patent. [No DOI].
144–145 Fermented Tofu
Chao, S.H. et al., 2008. Diversity of lactic acid bacteria in fermented brines used to make stinky tofu. International Journal of Food Microbiology, 123(1–2), pp.134–141. https://doi.org/10.1016/j.ijfoodmicro.2007.12.010
Han, B.Z. et al., 2004. Mucoraceous moulds involved in the commercial fermentation of Sufu Pehtze. Antonie van Leeuwenhoek, 85(1), pp.1–10. https://doi.org/10.1023/B:ANTO.0000020157.72415.B9
Han, B.Z., Rombouts, F.M. & Nout, M.J.R., 2001. A Chinese fermented soybean food. International Journal of Food Microbiology, 65(1–2), pp.1–10. https://doi.org/10.1016/S0168-1605(00)00523-7
146–147 Garum
Fine Dining Lovers. (n.d.). Garum: From Ancient Rome to New Nordic from https://www.finedininglovers.com/article/garum-ancient-rome-new-nordic
Ma, X., Sang, X., Yan, C.-Y., Zhang, Y., Bi, J., Zhang, G., Hao, H. and Hou, H. (2022). Dynamics of Bacterial Composition and Association with Quality Formation and Biogenic Amines Accumulation during Fish Sauce Spontaneous Fermentation. 88(13). doi:https://doi.org/10.1128/aem.00690-22.
Redzepi, R., & Zilber, D. (2018). The Noma Guide to Fermentation. Artisan.
Serious Eats. (2023). Pantry Essentials: All About Fish Sauce. Retrieved from [https://www.seriouseats.com/pantry-essentials-everything-you-need-to-know-about-fish-sauce](https://www.seriouseats.com/pantry-essentials-everything-you-need-to-know-about-fish-sauce)
Walker, C. (Ed.). (1998). Fish Food from the Waters. Prospect Books.
Jett, S. (2020). Base Fish Sauce Ratio. In R. Shih & J. Umansky (Authors), Koji Alchemy. Chelsea Green Publishing.
150–153 Yeasts
Campbell-Platt, G., 2009. Food Science and Technology. 2nd ed. Oxford: Wiley-Blackwell.
Duan, S.-F., Han, P.-J., Wang, Q.-M., Liu, W.-Q., Shi, J.-Y., Li, K., Zhang, X.-L. and Bai, F.-Y. (2018). The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nature Communications, [online] 9(2690). doi:https://doi.org/10.1038/s41467-018-05106-7.
Gallone, B., Steensels, J., Prahl, T., Soriaga, L., Saels, V., Herrera-Malaver, B., Merlevede, A., Roncoroni, M., Voordeckers, K., Miraglia, L., Teiling, C., Steffy, B., Taylor, M., Schwartz, A., Richardson, T., White, C., Baele, G., Maere, S. and Verstrepen, K.J. (2016). Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell, [online] 166(6), pp.1397-1410.e16. doi:https://doi.org/10.1016/j.cell.2016.08.020.
Hutkins, R.W., 2006. Microbiology and Technology of Fermented Foods. Ames, IA: Blackwell Publishing.
Jay, J.M., Loessner, M.J. and Golden, D.A., 2005. Modern Food Microbiology. 7th ed. New York: Springer.
Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H. and Matsudaira, P., 2021. Molecular Cell Biology. 9th ed. New York: W.H. Freeman.
174–175 Mead
Czabaj, S., Kawa-Rygielska, J., Kucharska, A. and Kliks, J. (2017). Effects of Mead Wort Heat Treatment on the Mead Fermentation Process and Antioxidant Activity. Molecules, 22(5), p.803. doi:https://doi.org/10.3390/molecules22050803.
Pereira, A.P., Mendes-Ferreira, A., Oliveira, J.M., Estevinho, L.M. and Mendes-Faia, A., 2013. High-cell-density fermentation of Saccharomyces cerevisiae for the optimisation of mead production. Food Microbiology, 33(1), pp.114–120. doi:10.1016/j.fm.2012.09.006.
Pereira, A.P.E., Dias, T., Andrade, J.V., Ramalhosa, E. and Estevinho, L.M., 2009. Mead production: Selection and characterization assays of Saccharomyces cerevisiae strains. Food and Chemical Toxicology, 47(8), pp.2057–2063. doi:10.1016/j.fct.2009.05.028.
Prestianni, R., Matraxia, M., Naselli, V., Pirrone, A., Badalamenti, N., Ingrassia, M., Gaglio, R., Settanni, L., Columba, P., Maggio, A., Bruno, M., Francesca, N., Moschetti, G. and Alfonzo, A., 2022. Use of sequentially inoculation of Saccharomyces cerevisiae and Hanseniaspora uvarum strains isolated from honey by-products to improve and stabilize the quality of mead produced in Sicily. Food Microbiology, 107, p.104064. doi:10.1016/j.fm.2022.104064.
176–181 Saké
Bokulich, N. A., Ohta, M., Lee, M., & Mills, D. A. (2014). Indigenous bacteria and fungi drive traditional kimoto sake fermentations. Applied and Environmental Microbiology, 80(17), 5522–5529. https://doi.org/10.1128/AEM.00663-14
Nishida, H. (2021). Sake Brewing and Bacteria Inhabiting Sake Breweries. Frontiers in Microbiology, 12, 602380. https://doi.org/10.3389/FMICB.2021.602380
184–185 Kvas
Dlusskaya, E., Jänsch, A., Schwab, C., Gänzle, M.G. et al., 2008. Microbial and chemical analysis of a kvass fermentation. European Food Research and Technology, 227(2), pp.261–266. https://doi.org/10.1007/s00217-007-0719-4
Dlusskaya, E. et al., 2008. Microbial and chemical analysis of a kvass fermentation. European Food Research and Technology Available at: https://www.academia.edu/13357191/Microbial_and_chemical_analysis_of_a_kvass_fermentation https://doi.org/10.1007/s00217-007-0719-4
The chemical and microbial composition of kvass and its health benefits. The Sourdough School Available at: https://thesourdoughschool.com/research/microbial-chemical-analysis-kvass-fermentation/
The impact of lactic acid bacteria and yeasts ratio on fermentation and taste of kvass. Estonian University of Life Sciences [master’s thesis]. Available at: https://dspace.emu.ee/items/ca53023a-af6d-42e2-af3d-b454ecc96361
Wang, P., Wu, J., Wang, T., Zhang, Y., Yao, X., Li, J., Wang, X. & Lü, X., 2022. Fermentation process optimization, chemical analysis, and storage stability evaluation of a probiotic barley malt kvass. Bioprocess and Biosystems Engineering, 45(7), pp.1175–1188. https://doi.org/10.1007/s00449-022-02734-8
186–187 Tepache
Más allá del pulque y el tepache: las bebidas alcohólicas no destiladas indígenas de México by Augusto Godoy, Teófilo Herrera & Miguel Ulloa
Ojeda-Linares, C., Álvarez-Ríos, G.D., Figueredo-Urbina, C.J., Islas, L.A., Lappe-Oliveras, P., Nabhan, G.P., Torres-García, I., Vallejo, M. and Casas, A. (2021). Traditional Fermented Beverages of Mexico: A Biocultural Unseen Foodscape. Foods, 10(10), p.2390. doi:https://doi.org/10.3390/foods10102390.
190–195 Acetic Acid
Ebi.ac.uk. (2021). Biofilms | Protein Data Bank in Europe. [online] Available at: https://www.ebi.ac.uk/pdbe/articles/biofilms [Accessed 8 Jun. 2025].
Chen, G.-L., Zheng, F.-J., Lin, B., Yang, Y.-X., Fang, X.-C., Verma, K.K., Yang, L.-F., 2023. Vinegar: A potential source of healthy and functional food with special reference to sugarcane vinegar. Front Nutr 10, 1145862.
Gilmartin, C, Vinegar, Crowood Press, 2024
Han, D.; Yang, Y.; Guo, Z.; Dai, S.; Jiang, M.; Zhu, Y.; Wang, Y.; Yu, Z.; Wang, K.; Rong, C.; et al. A Review on the Interaction of Acetic Acid Bacteria and Microbes in Food Fermentation: A Microbial Ecology Perspective. Foods 2024, 13, 2534.
Knöller, A., Widenmeyer, M., Bill, J. and Burghard, Z. (2020). Fast-Growing Bacterial Cellulose with Outstanding Mechanical Properties via Cross-Linking by Multivalent Ions. Materials, 13(12), p.2838. doi:https://doi.org/10.3390/ma13122838.
Santos, H.O., de Moraes, W.M.A.M., da Silva, G.A.R., Prestes, J., Schoenfeld, B.J., 2019. Vinegar (acetic acid) intake on glucose metabolism: A narrative review. Clinical Nutrition ESPEN 32, 1–7.
Xia, T., Zhang, B., Duan, W., Zhang, J., Wang, M., 2020. Nutrients and bioactive components from vinegar: A fermented and functional food. Journal of Functional Foods 64, 103681
202–203 Vinegars vs kombucha
Antolak, H., Piechota, D. and Kucharska, A. (2021). Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants, [online] 10(10), p.1541. doi:https://doi.org/10.3390/antiox10101541.
Ghosh, T., Beniwal, A., Semwal, A. and Navani, N.K. (2019). Mechanistic Insights Into Probiotic Properties of Lactic Acid Bacteria Associated With Ethnic Fermented Dairy Products. Frontiers in Microbiology, [online] 10, p.502. doi:https://doi.org/10.3389/fmicb.2019.00502.